Path Planning for a Quadruped in Arbitrary
3-Dimensional Environments

Zhikai Zhang, MECHE, Siddharth Saha, RI, Sayan Mondal, R/, and Gregory Su, ECE

Abstract

Navigating challenging terrains demands a nuanced understanding of the robot’s versatile capabilities. Highly agile mo-
bile robots endowed with complex locomotion skills, including climbing, jumping, and walking can often better handle such
environments than traditional wheels, but planning for such systems can often be much more difficult. This paper introduces a
comprehensive framework for real-time autonomous navigation of such motions by determining path costs using a neural network-
based cost predictor by leveraging elevation maps and A* path planning. We demonstrate in simulation that this system can plan
paths for multiple different cost functions, such as minimum energy or minimum time, depending on the specified criteria.

I. INTRODUCTION

In recent years, the substantial advancements in the control of legged systems have significantly enhanced the capabilities of
quadrupedal robots, particularly in navigating intricate terrains. Operating in diverse environments introduces various motion
outcomes and associated risks, necessitating robots to traverse along optimal paths with minimal travel expense and failure
probability based on local information. The efficacy of their locomotion is intricately tied to the specific locomotion controllers
employed. Consequently, conventional navigation methods that merely categorize traversability and perceive planning costs as
distances are inadequate for addressing the complexities of navigation tasks faced by quadrupedal robots.

A prevalent research avenue involves deriving motion costs from topographical information and obtaining an optimized
path using conventional planning methods. In earlier work [1], local terrain features are directly utilized to assess footprint
traversability, forming the basis of the cost function. This approach employs a set of manually tuned formulas, potentially
demanding specialized expertise and substantial experience with specific robots, especially as terrain complexity escalates or
additional cost factors, such as energy and time consumption, are introduced. Alternatively, [2] employs a deep neural network
to learn local motion cost estimates from simulation data, integrating the estimator with variations of RRT for global path
planning in [3].

We introduce a navigation framework designed to facilitate swift global path planning across intricate terrains, validated
through testing on the highly mobile quadrupedal robot, Unitree Gol in simulation. Employing a methodology akin to [3], we
initially train a precise local motion cost predictor within a simulation environment. This predictor estimates various motion
attributes based on a local height scan and locomotion commands. To expedite the search for a globally optimized path, we
perform variants of A* search on costmaps inferred by the cost predictor for any given enironment.

II. APPROACH
A. Controller

We trained an end-to-end policy for the quadrupedal Unitree Gol robot using Deep Reinforcent Learning [4] in IsaacGym
simulator [5]. The inputs to the policy network are the following three things: Scandots which is the privileged ground-truth
information obtained in simulator for capturing the local terrain information, Oracle heading by following the defined waypoints
over various obstacle-based courses and Proprioception which helps in state estimation of the robot. The output of the policy
is joint motor torques. Thus, we obtain a general policy capable of a variety of motion skills like climbing and jumping in
addition to walking. This policy is capable of making decisions about which skill to use based on the surrounding terrain and
heading direction and is capable of following wayponts that are reachable using any of the learned skills.

B. Cost Predictor

The cost predictor forms the backbone of our framework. Our path-planning strategy can only outperform the baseline (a
naive strategy that avoids all obstacles like gaps and blocks) if the cost estimates are meaningful. As we shall see in the next
stage, the planner has no direct information about the robot’s controller and treats the cost predictor as the oracle regarding
the robot’s capabilities.

The objective of the cost predictor is to predict the energy and time costs and the success probability for any given local
motion. Similar to B. Yang et al. [6], we define a local motion e(q,, g») to denote the robot’s translation and rotation from the
start pose g, to the target pose q,. The robot state g; contains the robot’s 2D center of mass position (coordinates denoted as
x; and y;) and orientation (denoted as), i.e., q; = (xi7yi,z/1i)T.

We take as input the local elevation map p, and the desired transformation wu, to effect the local motion. The local elevation
map p, is centered at the robot’s start pose g, and aligned with the world frame. We define the transformation vector u., =

(Ax, Ay, Atp,1p,)T, where Az =z — 24, Ay = Yy — Ya, A = 1y, — 1),. As represented in the architecture diagram (Fig.
1), we output three different costs called the energy, time, and risk costs. We shall discuss more details about the architecture
in the Implementation Details section.

C. Planner

With the cost predictor defining the path costs now defined,
the next question is how it is applied to the planner. In Feature Extractor Cost Predictor
our planner, each state is a 2-dimensional coordinate in f 1 f p 1
space that defines the robot’s current position. Each (z,y) j icﬁ(e)

coordinate is defined by an input environment, where each
coordinate has a height in meters relative to the ground)
plane that could result in an obstacle to the robot’s motion. Concat. iCT(c)
During planning, we don’t necessarily consider waypoint
connections to be adjacent pixels in our heightmaps, because
pixels are very small distances that may be infeasible for our
robot to precisely navigate. Instead, each waypoint connects
to waypoints that are some distance away in pixels; in
general, we assume that a connection is half the width of
the robot. This has the benefit of reducing the realistic size
of the state space to be searched, allowing us to improve
the runtime of the planner. The independent variables of the
state space are thus the coordinate positions of the robot and the environmental heightmap. The dependent variables necessary
for the cost predictor alongside the start and end positions are the height positions at defined positions around the robot, taken
according to pixel distances away from the robot position that match the real-life sensors of the robot.

For our planner, we use an implementation of A* [7], where the heuristic is the minimum expected energy and/or time
cost for traveling a given distance over flat ground, which in our problem is assumed to be the cheapest possible case for a
given straight distance. The minimum expected cost for flat ground was determined by our cost predictor training set for the
experimental costs over distances in any situation by taking the cost/distance value at one standard deviation below the mean.
In general, we expect this to be a consistent heuristic, since it is simply euclidean distance multiplied by a constant factor that
should be less than the minimum cost to actually traverse the given distance. As such, we expect generally optimal planning
outputs based on motion costs from our learned cost predictor.

(S
\E

G2
"

Local i
Features cr(®)

S — (36
24 Ch. 48 Ch. 36)

Fig. 1: Architecture of the cost predictor. Source: [6]

III. RESULTS
A. Implementation Details

1) Environmental Setup: In order to measure the performence of our planner after execution on the robot, we set up the
Issac gym simulator such that it reads the generated waypoints from the planner and directs the robot to follow these waypoints,
replacing the oracle heading, with its RL-based controller.. We then collect the total time (s) and energy (J) taken for the Robot
to take. We have prepared two types of terrains, hard and easy, where the gap size and depth remains the same but the block
height is 0.4 m and 0.1 m respectively.

2) Controller: Instead of training individual skills and planning over them, we chose to have the trained policy perform the
task of a local planner as well. Thus, we have trained one generalist policy [4] instead, capable of executing all such complex
maneuvers based on the local terrain information and the heading direction that is dictated by our global planner. The main
reward terms for this Deep RL policy are shaped such that they make the quadruped follow the consecutive nearest waypoint
and at the same time performing the local navigation elegently by minimizing the energy usage. It took roughly 20,000 epochs
to train this policy. There was a good amount of effort inovlved in figururing out the Gol robot’s URDF file as well as the
PD gains for converting the policy’s joint angle outputs into joint motor torques. This was crucial for getting an agile trained
policy.

3) Dataset Collection: Dataset collection is essential for our cost predictor to learn the capabilities of the robot. We execute
the learned controller policy in Isaac Gym and run multiple experiments with different terrain configurations and start and end
positions. The terrain information is stored in our dataset in the form of scandots, a privileged information that we query Isaac
Gym at the beginning of the run. Scandots is another term for the elevation map.

We applied the anytime idea from the field of planning and came up with an approach called Anytime Dataset Collection.
Our dataset collector runs multiple passes over our parameters with finer and finer granularities. For example, if we want to
vary the obstacle height H between [0m, 1m], in the first pass we run the coarsest granularity and only run experiments for
H = {0,1}. After iterating over all the other parameters, we exhaust this granularity, so we divide the granularity by 2, and
run another pass over all parameters with H = {0,0.5,1}. The critical observation here is that a finer granularity will repeat
all the experiments that were run with the coarser granularities. This will bias the dataset heavily, so, to combat this, we

maintain a hashset of the combination of parameters that we have run so far. As a result, we can guarantee zero repetition of
experiments. Thus, we call this approach Anytime Dataset Collection, as we can use the collected dataset at any time and be
assured of its diversity.

4) Cost Predictor: As shown in Fig. 1, we first run a feature extractor on the input scandots. The feature extractor comprises
a sequence of 4 convolutional networks and ReLLU activation functions so that our predictor can reason about the spatial features.
The output contains the local terrain features. We flatten this information, combine it with the desired local motion, and pass
it through a Linear layer with a ReLU activation. This whole structure forms the common backbone of the cost predictor. Our
network splits into three heads from here, corresponding to energy, time, and risk costs. Each head comprises a sequence of
two Linear layers with a ReLU activation in between. Thus, each head is capable of modeling a non-linear function.

5) Planner: To implement our planner, as described in Section II-C, we built it in C++, with the cost predictor called using
the embedded Python interface [8]. We built many variables to be configurable, including the number of pixels that equate to
half the width of the UniTree Gol [9]. In practice, we defined the side of a pixel to have a length of 0.05 meters, allowing us
to convert pixels to real distances based on this value.

The termination condition of A* is usually the robot reaching its goal [7]. However, because we have discretized our
environment, the exact coordinates of the goal are not guaranteed to be within the search space, so we add a secondary
termination condition that checks if we are closer than one step from the goal, in which case we immediately add a connection
to the goal and exit. One step is considered to be half the width of the robot in pixels, or 4 pixels (0.2 m). Once the goal is
found, the parent tree is then used to backtrack to the beginning to find the final optimal path.

As mentioned in Section II-C, the heuristic we use is expected to be consistent. We found that using simple euclidean
distance generally resulted in the heuristic being too weak to direct search, because the numerical scales of euclidean distance
and energy cost were too disparate, which required us to use a higher weight. Unfortunately, because our solution is based on
data post-processing, there may be some cases where the solution may be suboptimal because of the approximate nature of
the heuristic. On the other hand, it is not expected to be extremely suboptimal because we use a low value for energy relative
to the dataset.

B. Metrics

In analyzing the performance of the cost predictor, we use the same metric used during training. Because the two costs,
energy, time, are on significantly different scales, the outputs and label costs are normalized between O and 1 by dividing by
the maximum label values. These normalized values are then used to compute the Mean Square Error between the outputs and
the targets, which are then added together to compare how well the cost predictor performs overall for all three costs. The
probability of success will be used as cut off value that determines whether a state will be expanded.

To verify the performence of the Path Planner, we compare our cost predictor-based planner with a baseline ground-plane
planner, which runs the planner without a cost predictor by completely avoiding obstacles. The edge cost is then simply the
euclidian distance between the neghbouring states. The risk will be inflated in the face of obstacles, thus preventing the states
from being expanded by the A* search. The resulting time and energy costs after running the two planners are then tracked
by the robot in Issac gym and compared against each other.

C. Cost Predictor Performance

Because of the experimental and specialized nature of our environment, no strong data regarding state of the art performance
for cost predictors in our domain exists. As such, we compare how well the cost predictor performs relative to purely random
outputs from our untrained neural net architecture. These results can be seen in Table I.

TABLE I: Cost Predictor Normalized MSE Loss (x10%)

Model | Overall | Energy | Time | Success Probability
Random | 48.6152 | 5.0111 | 4.8503 30.3333
Trained | 0.7852 | 0.2923 | 0.0600 0.3988

As can be seen, our trained cost predictor consistently performs better by an order of magnitude or more when compared to
a random neural network. The success probability, in particular, improves significantly, although it is also the greatest source
of normalized loss in both random and trained cases.

Qualitatively, the performance of the cost predictor can also be seen in the cost heatmap shown in Figure 2. As expected,
costs near the starting position are generally lower than those that are farther away, and costs that involve passing an obstle,
or especially going over it, are more expensive than staying locally.

Heatmap of Map Heights

350
0.6
300
0.4
250
0.2
200
2 0.0
%
3
b
150 02
100 0.4
-0.6
0 -0.8
[10 20 30 40 50 60 70

X-axis

Height

Fig. 2: Heatmap of cost predictor outputs for a given environment. The environment is seen on the left, the costs on the right,
with energy, time, and success probability from top to bottom. The colored dots represent the position of the robot when
analyzing costs.

TABLE II: Path Planner Output Path Costs

Cost Predictor | Easy Map Energy (J) | Easy Map Time (s) | Hard Map Energy (J) | Hard Map Time (s)
No 850.17 9.76 771.45 8.32
Yes 742.55 6.899 699.18 6.98

D. Planner Performance

As can be seen, our cost predictor based planner consistently performs better when compared to the baseline, in both easy
and hard environments, in both energy and time cost. This is also seen qualitatively in 3, where the path generated by our
planner on the right takes a shorter pathjumping over the gap while the baseline planner goes around the entire gap, incurring
more energy and time cost. There are, however, cases when execution wasn’t successful because the planner didn’t take the
heading of the robot into account. When the waypoints are too close to the obscale, robot will attempt to jump onto the block
due to its scandots and also try to move back to its waypoint position. This causes instability where the robot will fall and
thus considered a failure case.

IV. CONCLUSION

In this paper, we introduced a controller-aware navigation approach for robots operating in challenging terrains. The
locomotion costs crucial for planning are acquired through the deployment of the locomotion controller in simulation, which
are then estimated by a neural network during A* planning. We also showed that this method is effective at improving upon
more naive approaches even in environments with varying obstacle heights.

Y-axis Yoaxis
= = [~ N w w = = ~ ~ w
S 7] ¥
o g g g 8 g 2 o 8 g ¥ g g g g
z
a o
a)
=3 1)
3 =3
3 H
'g <
X = ¥ L
x = x =
w o @ [
© ©
=
=)
@, &
Q =
= &
w
L 1 L e ° E
< < < ° N
@ - N

| =]
E g ¢ o E B a s 2
@ o S [N @

Height Height

Fig. 3: Baseline Planner (left) vs Our Planner (right) on Hard Environment

The versatility of our approach is underscored by its applicability to multiple types of robots, facilitated by learning-based
motion cost estimation and training data obtained from simulation. This feature streamlines the deployment of our planning
framework on diverse robotic platforms with minimal manual effort. Future work includes adding heading for a 3D planning
problem to avoid conflict in controller behaviour and waypoints and improving on the cost predictor. The training dataset
comprised of 5000 data points which is not enough for a deep network with convolution and linear layers. We should add
skip connections to prevent vanishing gradient problems from occurring. Also, we would like to incorporate a gradient-based
optimizer to obtain an optimised path from the rough paths that are obtained from our algorithm due to the strict step sizes. We
also would like to improve our waypoint sampling strategy to allow the policy to overcome obstacles by following smoother
paths instead of each and every closely and precisely spaced waypoint.

(1]

REFERENCES

Martin Wermelinger et al. “Navigation planning for legged robots in challenging terrain”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2016, pp. 1184-1189. po1: 10.1109/IROS.2016.7759199.

R. Omar Chavez-Garcia et al. “Learning Ground Traversability From Simulations”. In: IEEE Robotics and Automation
Letters 3.3 (2018), pp. 1695-1702. por: 10.1109/LRA.2018.2801794.

Jérome Guzzi et al. “Path Planning With Local Motion Estimations”. In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 2586-2593. poI: 10.1109/LRA.2020.2972849.

Xuxin Cheng et al. “Extreme Parkour with Legged Robots”. In: arXiv preprint arXiv:2309.14341 (2023).

NVIDIA Corporation. NVIDIA Isaac Gym. URL: https://developer.nvidia.com/isaac-gym.

Bowen Yang et al. “Real-time Optimal Navigation Planning Using Learned Motion Costs”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). 2021, pp. 9283-9289. por: 10.1109/ICRA48506.2021.9561861.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determination of Minimum Cost
Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2 (1968), pp. 100-107. po1: 10.1109/TSSC.1968.
300136.

Embedding Python in Another Application. URL: https://docs.python.org/3/extending/embedding.html.

Unitree Gol. URL: https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-
companion-intelligent-robot-go1-quadruped-robot-dog.

